60 kilomètres de creusement au tunnelier
Le point sur l’expérience d’Electricité de France

Gilbert MARIN

L’auteur se propose, alors qu’au 1/06/1985 la longueur cumulée des chantiers de creusement mécanique en pleine section développés par E.D.F. pour son équipement hydroélectrique atteint 60 km, d’effectuer une nouvelle synthèse des résultats des opérations engagées, ainsi que l’évaluation des avances techniques acquises et de l’état actuel des réflexions sur les conditions optimales d’emploi des tunneliers.

Il le fait en complément de deux livraisons antérieures de la revue de « l’Industrie Minérale - Les Techniques »:

Pour matérialiser la continuité entre les trois articles, le cliché désormais classique de la Galerie d’Echaillon est placé à nouveau en tête de la présente livraison, symbolisant le véritable lancement sur les chantiers E.D.F. du tunnelier - néologisme précisément créé à cette occasion -, et la supériorité, au moins géométrique, de cette technique moderne de foration.

1.- CADRE GENERAL DE L’EXPOSE

1.1.- Le tableau synoptique n° 2 constitue un repère simplifié de l’ensemble des expériences concernées. Une première lecture suffit à faire apparaître:

- une gamme de diamètres de creusement allant de 2,20 m pour la première expérience d’Avérole (a) à 7,70 m et 8,10 m pour les galeries d’aménée de Grand’Maison (o) et Bramefarine (f).

- la grande diversité des cadres géologiques depuis des formations sédimentaires très variées jusqu’aux roches cristallines les plus dures, sans parler des accidents géologiques dont chaque franchissement constitue en fait un cas d’espèce et que le tableau ne peut identifier. Tout aussi ouverts apparaîtraient les paramètres géotechniques, qu’il est difficile de quantifier à ce niveau de la présentation.

* Cette dernière communication reprenait, en le complétant, un exposé présenté au Congrès AITES de Nice de mai 1981
- les creusements de puits inclinés - Il s'agit des opérations h (déjà relât en par le premier article) et g à l, couvertes par l'article de janvier 1984,
- les chantiers m, en cours de creusement au printemps 80, n et o en phase d'installation à cette même époque. Ces trois creusements étaient en conséquence simplement évoqués par l'article de décembre 80,
- 5 creusements nouveaux repérés p à t.

Ce sont exclusivement les données spécifiques et les résultats des deux derniers groupes de chantier (m à t) qui seront développés au chapitre 2, avant un essai de synthèse s'appuyant plus largement sur l'ensemble de l'expérience E.D.F. et ouvrant sur l'avenir.

1.3. - S'il apparaît superflu de relater à nouveau le contexte historique, technique et économique du creusement mécanique, non plus que la technologie des machines foreuses, la confirmation de quelques conventions est cependant utile pour éclairer et berner notre propos.

1.3.1. Le mot tunnelier a donc été retenu en France, depuis Echaillon, pour désigner exclusivement les machines creusant sans explosif, directement en pleine section, donc en profil circulaire, les tunnels au rocher.

Ce simple rappel terminologique induit plusieurs observations complémentaires:

- l'outil de foration ainsi défini est particulièrement bien adapté au creusement des additions hydrauliques qui sont effectivement très généralement ouvertes au rocher et pour lesquelles la section circulaire est à priori optimale,
- l'extraction du terme aux boucliers mécanisés, armés ou non de molettes, pour terrains meubles, nous semble abusive,
- les défenseurs de la langue devront se méfier de la concurrence du sigle TBM, valable à la fois pour les anglophones (tunnel boring machine) et pour les germanophones (Tunnelbohrmaschine).
1.3.2. Les développements qui suivent se veulent essentiellement pratiques. C'est ainsi que le critère géomécanique le plus souvent utilisé sera, selon les errentes anciens, la résistance à la compression simple (RC) exprimée en bars, étant bien entendu que ce repère, très insuffisant pour évaluer la forfaitabilité d'une roche, doit être impérativement complété par des tests de traction (RT), de dureté et d'abrasivitée (par exemple les tests CERCHAR Dc et Ac)... etc. Les expériences industrielles qui nous intéressent ici ont montré par ailleurs que la fragilité in situ, et à l'échelle de la machine, difficilement abordable sur échantillons, constituait souvent le paramètre déterminant.

1.3.3. Au-delà des cadences d'avancement réalisées, plusieurs temps élémentaires et coefficients sont classiquement utilisés pour quantifier la fiabilité des tunneliers et le rendement des chantiers de creusement. Nous ne ferons références qu'à deux repères:

- le coefficient d'utilisation « brut »:
 \[\text{temps de creusement effectif} \]
 temps total du chantier

- le coefficient d'utilisation « net »:
 \[\text{temps de creusement effectif} \]
 temps de fonctionnement du tunnelier

1.3.4. Deux autres critères pratiques méritent attention puisque facteurs importants du rendement et du prix de revient du creusement, ils concourent également à caractériser, après coup, la «forfaitabilité industrielle», laquelle mêle intimement le potentiel géomécanique du rocher, le mode de travail du tunnelier et l'efficacité de l'attaque.

- la consommation d'outils de coupe: il est plus commode de l'exprimer par son inverse, le volume de roche abattu par disque de molettes, étant acquis aujourd'hui que les molettes à disques sont bien les outils les plus caractéristiques des tunneliers. Il convient naturellement de préciser la géométrie du disque. Des études plus élaborées (voir 23.6) prennent en compte le poids d'acier de coupe consommé. *

* l'énergie spécifique ES: le nombre de kilowatt-heures nécessaires pour abattre un mètre cube de rocher est fourni par l'enregistrement continu et sélectif de la consommation du tunnelier.

Dans les conditions précisées en 1.2., sont donc relatés ici, le résultat des 8 chantiers m à t du tableau synthétique.

2.1. Adduction complémentaire du Brévón (1979-1981) - Expérience m -

2.1.0. La dérivation du torrent du Brévón dans la retenue du barrage du Jotty, près de Thonon, n'a pas été lancée, comme les chantiers précédents de la Région d'Equipement Alpes-Lyon, mais par le Groupe Régional de Production Hydraulique (G.R.P.H.) Savoie.

L'adduction a été creusée en 3 m de diamètre, sur 4430 m, dans des formations calcaires, offrant sur échantillons, des résistances à la compression variant de 800 à 2100 bars et une faible abrasivité. Le profil en long géologique présente une certaine symétrie relativement à un accident central dit de "La Vernaz".

Le travail a été confié à l'Entreprise Bouygues proposant l'utilisation du tunnelier mis au point par M. Montacié et dont elle assure actuellement la promotion. On connaît les techniques de taille et d'avancement original de cet appareil de conception française (2.7 de l'article de décembre 80). Celui du Brévón avait les caractéristiques suivantes:

- 3 bras de balayage armés d'une molette Robbins
- vitesse de rotation de la tête variable de 0 à 42 tours/min.
- poussée maximale: 120 t.
- puissance installée: 485 kW
- poids: 35 t + 15 t de chariots auxiliaires.

2.1.1. D'août 1979 à août 1981, le tunnelier a foré 4150 m de galerie dans les formations très variées attendues, dont la faille de la Varnaz de 96 m d'épaisseur et une deuxième passée médioce de 130 m.

Les marno-calcaires du lias, qui encadrent sur 1050 et 1300 m l'accident central, ont été le siège d'un écaillement important apparaissant 8 à 10 m en arrière du front. La pose des cintres de soutènement nécessitait une surexcavation délicate du gabarit de 3 m imposé par les sabots inférieurs fixes de la tête. Malgré ces difficultés, la prestation du chantier est globalement satisfaisante:
avancement mensuel moyen : 198 m
meilleur jour : 31 m
meilleur mois : 358 m
coefficient d'utilisation brut
(en zone courante): 40%
volume abattu par disque de 300 mm: 160 m³

2.2.- Suréquipement du Pouget (1980 - 1982) Expérience n-

2.2.1. L’aménagement hydro-électrique du Pouget, dans les Causses de l’Aveyron, a fait l’objet d’un suréquipement destiné à accroître ses performances énergétiques. La nouvelle installation, pilotée par la Région d’Equipement Alpes Maritimes (R.E.A.M.), comporte notamment une galerie de 4,7 km tracée sous faible couverture (50 à 150 m), dans des gneiss fissurés et abrasifs, à proximité de la galerie du premier équipement.

Un tunnelier Wirth TB IVH de 5,05 m de diamètre a été commandé par le groupement Borie-Fougerolle.

- 27 molettes bidisciques de Ø 300 mm et une molette centrale à 5 disques
- puissance : 650 kVA
- poids : 185 t.
- course de forage : 1 250 m.

La poussée, réglable de 100 à 500 tonnes, est assurée, à l’inverse des dispositions habituelles, par 4 vérins de traction qui, placés en arrière du corps du tunnelier « tirent » en avant le kelly intérieur. Cette solution originale dégage sensiblement le volume disponible à l’arrière de la tête pour la pose des soutènements, les échanges de molettes, les opérations d’entretien etc.

Le tunnelier comporte deux bras boulonneurs, un supermarteau sur glissière pour les sondages de reconnaissance, et un enregistrement continu des paramètres de forage : poussée, couple, vitesse de rotation.

2.2.2. Dans un terrain finement fracturé, la fenêtre et l’origine de la galerie ont été délibérément creusés à l’explosif pour ne pas compromettre la mise en route du tunnelier.

Cependant, après son lancement en juin 1980, au pm 370 de la galerie, le tunnelier a dû franchir encore 700 m de gneiss oeillets à grain fin de très mauvaise tenue. Le franchissement qui aurait été des plus aléatoires avec des moyens conventionnels, a pu être réalisé à la cadence moyenne de 6 m/jour, grâce à un soutènement lourd continu et à une limitation attentive, éclairée par l’enregistreur des paramètres de forage, des pressions appliquées au terrain par la tête de coupe et par les patins d’appuis.

Une étude plus précise du massif, appuyée sur quelques sondages de reconnaissance, conduisait, pour éviter aux gneiss à grains fins, à modifier quelque peu le tracé. De fait, au-delà du pm 1140, le chantier progressait à très bonne cadence : 15, puis 17 m/jour, dans des gneiss de bien meilleure qualité, mais comportant de nombreux inclusions d’amphibolites et de mylonite et nécessitant un boulonnage presque systématique.

La sondeuse pilote a été peu utilisée puisqu’il n’était pas prévu d’arrêt systématique pour changement des molettes et que la proximité de l’ancienne galerie et de la surface topographique mettait le chantier à l’abri de grosses surprises.

On a pu regretter l’absence d’érector de cinetres encore que la pose des plaques de garnissage ait exigé plus de temps que celle des cadres propres dits.

Le seul incident mécanique notable a été constitué par le changement au pm 2500, en 1,5 mois, du roulement principal.

- avancement moyen, tous terrains confondus, par jour de travail effectif : 12,69 m
- meilleur jour : 44,55 m
- meilleur mois : 612 m
- coefficient d’utilisation brut :
 - en mauvais terrain : 26%
 - en bon terrain : 50%
- m³ abattu en moyenne par disque de 300 mm (dispersion des ratios d’usure est très élevée) : 125 m³
- soutènement par cinetres métalliques : 460 t.

2.3.- Galerie d’aménée en charge de Grand’Maison - Expérience o-

2.3.1. Le résultat encourageant du creusement test de la D.P. (dérivation provisoire) du barrage de Grand’Maison (g) nous autorisait à ménager une variante foration mécanique concurremment à l’explois, lors de l’appel d’offres lancé en 1979 par la R.E.A.L., pour la construction de la galerie d’aménée en charge de 7 km de longueur, tracée en 7,70 m de diamètre, dans des formations cristallines coriaces entrecoupées de zones fracturées (Ac 700 à 3300 bars - Rtb 50 à 200 bars - Dc 60 à 160 - Ac 2,1 à 4,3).

Le creusement devait être conduit à partir d’une fenêtre centrale, élément défavorable à la solution tunnelier puisque imposant deux attaque successives, avec «retournement » du train de creusement entre les deux. Malgré ce handicap, le marché a été passé au groupement Sain-rapt et Brice, Lefrançois, Borie, Fougerolle, Pascal, Spada qui proposait l’utilisation d’une foreuse Robbins 250 TBM de très forte puissance:

![Fig 5 - Galerie en charge de Grand’Maison](image-url)

La sondeuse pilote a été peu utilisée puisqu’il n’était pas prévu d’arrêt systématique pour changement des molettes et que la proximité de l’ancienne galerie et de la surface topographique mettait le chantier à l’abri de grosses surprises.

On a pu regretter l’absence d’érector de cinetres encore que la pose des plaques de garnissage ait exigé plus de temps que celle des cadres propres dits.

Le seul incident mécanique notable a été constitué par le changement au pm 2500, en 1,5 mois, du roulement principal.

- avancement moyen, tous terrains confondus, par jour de travail effectif : 12,69 m
- meilleur jour : 44,55 m
- meilleur mois : 612 m
- coefficient d’utilisation brut :
 - en mauvais terrain : 26%
 - en bon terrain : 50%
- m³ abattu en moyenne par disque de 300 mm (dispersion des ratios d’usure est très élevée) : 125 m³
- soutènement par cinetres métalliques : 460 t.

2.3.- Galerie d’aménée en charge de Grand’Maison - Expérience o-

2.3.1. Le résultat encourageant du creusement test de la D.P. (dérivation provisoire) du barrage de Grand’Maison (g) nous autorisait à ménager une variante foration mécanique concurremment à l’explois, lors de l’appel d’offres lancé en 1979 par la R.E.A.L., pour la construction de la galerie d’aménée en charge de 7 km de longueur, tracée en 7,70 m de diamètre, dans des formations cristallines coriaces entrecoupées de zones fracturées (Ac 700 à 3300 bars - Rtb 50 à 200 bars - Dc 60 à 160 - Ac 2,1 à 4,3).

Le creusement devait être conduit à partir d’une fenêtre centrale, élément défavorable à la solution tunnelier puisque imposant deux attaque successives, avec «retournement » du train de creusement entre les deux. Malgré ce handicap, le marché a été passé au groupement Sain-rapt et Brice, Lefrançois, Borie, Fougerolle, Pascal, Spada qui proposait l’utilisation d’une foreuse Robbins 250 TBM de très forte puissance:

![Fig 5 - Galerie en charge de Grand’Maison](image-url)
- tête de Ø7,70 portant 53 molettes simples de grand diamètre (394 mm) permettant des poussées unitaires de 20 t, et 2 bi-disques au centre
 - poussée totale : 1120 t
 - vitesse de rotation : 5,25 tr/min
 - longueur des passes de forage : 1,80 m
 - puissance totale à la tête : 2000 ch (10 moteurs de 200 ch)
 - puissance électrique totale : 2400 kVA
 - poids total : 380 t.

2.3.2. L'appareil a reçu plusieurs équipements complémentaires de foration :
- un érecteur annulaire de cintrés métalliques HEB 140 ou 180, placés normalement à l'écarter
 - des molettes d'8,90 m (2 cintrés par passe de creusement),
- deux bras oscillants dirigés vers le haut, armés de marteaux boulonneurs Montabert. Ils ouvrent des forages de 3 m de longueur pour l'ancrage du grillage de protection posé systématiquement en toit de la galerie.
- un portique de foration placé à l'arrière du tunnel pour pallier l'insuffisance de débattement latéral des boulonneurs précédents et épinger notamment les plages d'éclatement du rocher sous les patins d'appui du tunnelier,
- un affût longitudinal Montabert, avec marteau H 70, pour le creusement de forages pilotes destructifs de 40 m de longueur (voir galerie sous Belledonne). Il est équipé d'un appareillage d'enregistrement des paramètres de foration.
- un dispositif de manutention pour le transfert et la pose immédiatement derrière la tête de coupe, d'éléments de radier préfabriqués en béton armé de 0,90 m de largeur et de 3,5 t de poids unitaire, couvrant un secteur de 70° (un voûtement par demi-passe de foration et par train de maquillage). L'intervalle d'environ 5 cm entre voûtements est rempli avec du mortier préparé sur place.

L'énergie électrique est rentrée en galerie en 20

L'énergie électrique est rentrée en galerie en 20 000 V et transformée sur le tunnelier en 380 V.

2.3.3. L'architecture renforcée de la tête n'a pas permis de ménager un changement des outils par l'arrière.

Apparemment surprenant, le tunnelier a dû être encore quelque peu renforcé après 3 mois de fonctionnement pour effacer des vibrations anormales, en même temps que la poussée unitaire moyenne des molettes était poussée de 19,6 à 22,5 t.

2.3.4. Les deux chantiers successifs de creusement recouvrent un linéaire total de 5400 m sur les 7000 m de la galerie en charge, et les extrémités amont et aval liées aux ouvrages de prise de place et de réglementation hydraulique ayant été dérochées à l'explosion pour des raisons d'opportunité d'accès et de planning.

Avec un retard de 6 mois dû aux difficultés géologiques auxquelles s'est heurté l'ouverture à l'explosion de la fenêtre d'attaque centrale de la Villette, de 1300 m de longueur, le tunnelier a été mis en route en septembre 1981 sur l'attaque amont. Il affrontait alors immédiatement, dans la couche initiale, une zone faillie fortement aquifère. Le délai de rodage des équipes et du matériel s'en est trouvé sensiblement allongé.

A partir de janvier 1982, les cadences d'avancement se sont progressivement améliorées pour atteindre 400 m/mois, au sein de gneiss très durs (Rc 3100 bars) et peu affectés par la fracturation.

Le «retournement» du chantier d'attaque vers l'aval de la Villette demandait, y compris la révision du matériel, 2,5 mois.

L'attaque aval a dû franchir, au sein du même massif de gneiss coriaces de nombreuses zones faillées, avec des venues d'eau abondantes dont le débit atteignait parfois 300 l/sec. Au front de taille, la pose de cintrés lourds de soutènement et des garnissages nécessaires, faisait baisser la cadence journalière de progression d'environ 50%.

Le tunnelier débouchait le 16 septembre 1983 à l'extrémité aval.

Les résultats techniques du creusement peuvent se résumer ainsi :

<table>
<thead>
<tr>
<th></th>
<th>Amont</th>
<th>Aval</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td>3350</td>
<td>2050</td>
<td>5400</td>
</tr>
<tr>
<td>avancement m/jour</td>
<td>11,33</td>
<td>10,37</td>
<td>10,93</td>
</tr>
<tr>
<td>meilleur jour</td>
<td>25,70</td>
<td>26,90</td>
<td>-</td>
</tr>
<tr>
<td>meilleure semaine (6 jours)</td>
<td>114,10</td>
<td>137,70</td>
<td>-</td>
</tr>
<tr>
<td>meilleur mois</td>
<td>443,70</td>
<td>360,40</td>
<td>-</td>
</tr>
<tr>
<td>coefficient d'utilisation brut</td>
<td>40%</td>
<td>24%</td>
<td>33%</td>
</tr>
<tr>
<td>m² abattu par molette</td>
<td>57,50</td>
<td>110</td>
<td>77,40</td>
</tr>
<tr>
<td>énergie spécifique (kWh/m²)</td>
<td>17</td>
<td>10,5</td>
<td>14,5</td>
</tr>
<tr>
<td>soutènements métalliques (t)</td>
<td>64</td>
<td>750</td>
<td>814</td>
</tr>
</tbody>
</table>

2.3.5. Le voûtement de radier rempli plusieurs fonctions: caniveau bétonné axial, fixation des voiles de rouage et de coffrage, appui des cintrés de soutènement (certains voûtements comportent des plaques d'appuis sur lesquelles on vient sou-
der les cintrés HEB) et du coffrage, ... Il constitue par ailleurs le radiateur définitif de la galerie (*), allégeant d’autant la phase du bétonnage proprement dite. Il convient de tenir compte de cette dernière observation pour apprécier objectivement les performances ci-dessus.

2.3.6. Les paramètres quantifiables du «système de creusement» sont donnés en techniques préliminaires (s) et en temps, éléments essentiels de la gestion machine et chantier, taches instantanées de forage, soutènements posés, avancement par poste, consommation d’outils, consommation d’énergie, ... ont fait, ici, l’objet d’une analyse statistique multidimensionnelle mettant notamment en valeur les grands déterminants de l’activité, à savoir, les facteurs machine, massif roche, aléas extérieurs. L’étude a été menée par le Département T.E.G.G. d’E.D.F. avec l’appui de la Direction des Etudes et Recherches pour la mise en œuvre des programmes d’analyse.

Le même outil informatique a été appliqué, ensuite, aux chantiers de Ferrières (r), Montferney (s) et Thiers (t).

2.3.7. On observera que dans la foulée du succès du creusement expérimental de la D.P. du barrage, les divers maillons du circuit en charge reliant le réservoir supérieur de Grand’Maison aux usines de l’Eau d’Olle : galerie d’amenée et conduites forcées, ont été, chaque fois que la longueur des chantiers le justifiait, ouverts au tunnelier.

Pour les multiples puits verticaux ou inclinés de faible longueur (< 200 m) de l’aménagement, il a été fait appel à la technique Raised-drill mise en œuvre par l’entreprise Huillet avec des foreuses Robbins (notamment la 85 R armée de têtes d’alésage de 3,60 m et 5,50 m) : 28 puits pour une ligne totale de 1944 m, et des diamètres de creusement de 1,80 m, 2,40 m, 3,60 m et 5,50 m.

Notons encore, au sujet de la mécanisation du creusement sur cet aménagement, que si le trop faible rendement des machines à attaque ponctuelle dans les calcaires liasiques de l’usine n’a pas permis, après essai industriel sur les fenêtres de base des puits de conduites forcées, de les qualifier pour les abattages en pleine section, un Roboter E 198 Paurat a obtenu, grâce à un pilotage rigoureux, des découps d’une grande qualité pour des zones sensibles de raccordement d’ouvrages et donc des économies appréciables de hors-projets et de soutènements.

2.4.- Galerie d’amenée de Vieux-Pré - Expérience p -

2.4.1. Le réservoir de Vieux-Pré, aménagé dans les Vosges, par R.E.A.L., est destiné à accumuler 50 hm³ en vue de soutenir les étages de la Meurthe et de la Moselle notament au droit du site nucléaire de Cattenom. Deux groupes hydromécaniques réversibles de faible puissance permettent, en pompe, de compléter le remplissage du bassin avec les apports d’un affluent de la Meurthe, et en turbine, de récupérer l’énergie fournie par le déstockage du réservoir.

La galerie de liaison, entre réservoir et usine, est créée dans un massif peu stratifié de grès vosgiens, de dureté moyenne (500 à 800 bars) et abrasifs. Malgré la faible longueur de l’ouvrage : 1266 m, et la présence de 3 courbes dont la courbe de sortie à inscrire dans le plan vertical, il a paru intéressant de mettre en œuvre un tunnelier de diamètre minimum 0,290 m. Il s’agit à nouveau du tunnelier français Montacle-Bouygues (voir m). Nous rappelons les caractéristiques essentielles du TB 290 mis en œuvre à Vieux-Pré par l’entreprise Bouygues :

- poids total : 30 t
- puissance moyenne : 210 CV pour la tête et 45 CV pour les services annexes
- 3 molettes à simple disque, portées chacune par un bras indépendant
- vitesse de rotation de la tête : 12 t/min.
- poussée maximum : 120 t.

2.4.2. Les résultats globaux du creusement de cette galerie courte justifient à posteriori, l’utilisation d’un tunnelier, il est vrai plus léger et plus souple que les tunneliers à tête complète.
- montage du tunnelier : 9 jours
- creusement : 98 jours (dont 91 travaillés) soit un avancement moyen de : 13,80 m/jour de travail
- cadence moyenne en alignment : 16,00 m
- coefficient d’utilisation brut : 52%
- repli : 4 jours
- volume abattu par molette 0 300 mm : 66 m³

Deux zones très localisées seulement ont dû être cirées à droite du front, alors qu’un travail à l’explosif aurait très probablement imposé fréquemment le confortement de l’extraction, notamment à la traversée de grès arénisés.

L’usure des molettes est peu élevée malgré l’abrasivité intrinsèque du grès, compensé ici par sa fragilité à l’abattage.

Certaines difficultés apparues lors du placement du béton de revêtement sont imputables à un pilotage insuffisamment précis de la foreuse et aussi à l’épaisseur réduite (20 cm) de l’anneau (*).

Fig 7 - Vieux Pré. Vue perspective du TB 290 Bouygues. Vieux Pré Perspective view of the Bouygues TB 290.

* Avec un tunnelier, l’épaisseur réelle du revêtement rejoint à quelques cm près (précision du pilotage, usure des molettes périphériques) l’épaisseur théorique. Ne pas descendre audessous de 20-25 cm.
2.5. - Tunnel du Lautaret -

Expérience q -

2.5.1. Il s’agissait cette fois, dans le cadre des études préliminaires de l’aménagement de la Haute Romanche et pour ménager au maximum un environnement montagnard sensible qu’une piste de chantier risquait de compromettre, de lancer à proximité du col du Lautaret, une galerie de 2861 m de longueur à laquelle était affectée la double mission de reconnaissance géologique et d’accès au site de retenue envisagé au Plan de l’Alpe de Villar d’Arène.

Le tracé comporte deux courbes à grand rayon (600 m) de 380 m de longueur.

Influencé par le même souci écologique, le choix s’est porté sur une solution de creusement au tunnelier proposé par EROSM (Entreprise Pico et Mürer), en 3,60 m de diamètre.

Le tunnelier WIRTH TB II 360 E de Mürer SA a été utilisé précédemment sur le puits CF 1 (i) de Grand'Maison. La tête de coupe est armée de 28 molettes monodisciques de Ø 400 mm et d’une molette axiale multidiscques. Elle tourne à 28 tr/min. :

- puissance maximum : 300 kW,
- puissance moyenne : 400 t

2.5.2. Après une installation rendue malaisée par les intempéries (on était en plein hiver, à la cote 1930), le tunnelier est entré en action début février 1982, pour déboucher dans la cuvette du Plan de l’Alpe en début août, ce qui représente une progression calendaire moyenne supérieure à 500 m/mois.

Plus précisément, la galerie a été tracée jusqu’au puits 2645 dans des marno-calcaires du dogger et du lias de dureté et abrasivité réduites, dont plusieurs passages ont dû être soutenus par boulons ou cintres métalliques, de 2645 à 2682 dans une intercalation trasicaire compacte, et entre 2682 et 2860 dans le socle cristallin extrêmement coriace sur lequel doit s’appuyer le barrage projeté.

Les débits drainés sont demeurés très modestes. Les écoulements du chantier avaient cependant nécessité la construction à priori, d’un dispositif de décantation extrêmement lourd pour satisfaire à un contrôle pointilleux de la pureté physique, chimique et bactériologique du petit ruisseau du Lautaret.

Les résultats techniques du creusement sont excellents :

- meilleur jour : 46 m
- avancement mensuel moyen : 512 m
- avancement journalier moyen :
 - lias 26,4 m
 - cristallin 22,5 m

- volume abattu par disque Ø 400 mm
 - dans le lias 324 m³
 - dans le cristallin 78 m³

- coefficient d’utilisation brut
 - schistes 47%
 - cristallin 54%

- énergie spécifique
 - lias 12 kWh/m³
 - cristallin 27 kWh/m³

La tendance au dépilage de certaines zones des marno-calcaires a eu tendance à s’accélérer après l’achèvement du creusement, obligeant à des opérations complémentaires de confortement par boulonnage, béton projeté, voire localement reprise du soutènement métallique et bétonnage.

2.5.3. En deuxième phase, la transformation de la galerie circulaire de Ø 3,60 m en tunnel d’accès sur rails sur pneus (au gabarit d’un camion de 2,60 m de largeur) a comporté, comme le montre le profil type, plusieurs interventions complémentaires :

- sciage mécanique d’un onglet de 0,30 x 0,30 à la base des piédroits, opération techniquement réussie, mais assez laborieuse, surtout dans le cristallin,

- bétonnage du radiateur horizontal venant se buter sur deux rails à l’écartement de 0,80 m qui délimitent le caniveau axial,

- abattage à l’explosif des nches pour personnel (1 niche de 1 m de largeur tous les 50 m en alignement et tous les 25 m en courbe) et de 4 garages de 53 m de longueur. L’occasion est bonne pour rappeler qu’il n’est jamais agréable de remettre en cause à l’explosif, malgré les précautions qui peuvent être prises, la qualité d’un dérochement mécanique.
2.6.- Galerie d’aménée de Ferrières - Expérience r -

2.6.1. L’aménagement de Ferrières conduit par la Région d’Équipement Alpes Marseille (R.E.A.M.) est établi en dérivation sur l’Ariège, près de Foix, dans les Pyrénées centrales. La galerie d’aménée de 4709 m de longueur a été forée sur 4237 m (+76 m de fenêtre), par un tunnelier Wirth TBV de 5,90 m de diamètre, mis en œuvre par le groupe Spie Batignolles - Fougerolles.

Le tunnelier en cause avait creusé auparavant avec honneur sur Echaillon (c) et Belledonne aval (e), 14,4 km de tunnel en terrain dur et localement très difficile. Il est vrai qu’il a dû subir, après un séjour de quatre années sur parc, une cure de rajustement ayant comporté essentiellement la réfection des transmissions hydrauliques et le changement de la tête, équipée maintenant de 47 molettes monodisciques de Ø 400 mm.

Le tunnelier a reçu également des armements complémentaires de foration pour boulonnage et forage pilote, comparables à ceux de Grand’Maison (o). Les équipements arrière : maniement et divers, proviennent du chantier du Pouget (n).

2.6.2. La perforation entreprise fin août 1982 a progressé lentement tout d’abord dans les schistes noirs dévonien de médioce qualité nécessitant un soutènement lourd continu, puis dans un massif de gneiss apparemment plus compact, mais découpé par de grandes cassures «actives» et par des discontinuités très rapprochées.

Le dégagement de plusieurs éboulements neutralisait le chantier au total pendant 27 jours.

Par ailleurs, le tunnelier a été arrêté 2 semaines en août 1983, pour contrôles et entretien, puis 3 semaines à l’automne 1984 pour soudage sur la tête, du capot du roulement principal, en remplacement provisoire de la fixation boulonnée qui avait souffert de poussées dissymétriques induites par la variabilité du terrain d’appui des grippers, les enfilages, des redémarres en force dans des roches éboulées.

L’avancement était souvent retardé par la nécessité de conforter des zones soutenues antérieurement et soumises à des poussées qui tendaient à s’aggraver plusieurs mois après le creusement. On retrouve ici, bien que l’épaisseur de la couverture rocheuse n’excède pas 450 m, le phénomène d’évolution différée des excavations ouvertes sans explosif déjà signalé pour la galerie de Belledonne (e), le puits de Super Bissorte (e) et le tunnel du Lautaret (q).

La figure 12 montre au premier plan le soutènement primaire en HEB 120 complété par des plaques de garnissage et des enfilages en calotte. Un renforcement en béton projeté a été nécessaire. A la suite du fléchissement des cinettes qui apparaît en calotte, un nouveau cadrage confortatif en HEB 160 a été placé au deuxième plan, à l’intérieur du premier, engageant ainsi le gabarit du revêtement.

La percée dans la prise d’eau intervenait finalement le 11.02.85 sans que le chantier n’ait jamais atteint une bonne vitesse de croisière, du fait de la trop faible longueur des zones saines et des interventions successives de confortement.
Au total 74% de la longueur de la galerie a dû être soutenu par cintrages métalliques et 26% par boulonnage plus ou moins dense.

2.6.3. L’analyse statistique du système de creusement, telle qu’elle a été présentée en 2.3.6., met ici en relief le poids déterminant de l’activité souterraine et notamment de la pose des cintrages métalliques pour laquelle on aurait pu souhaiter une mécanisation plus poussée.

<table>
<thead>
<tr>
<th></th>
<th>Formation</th>
<th>Appui</th>
<th>Aislat</th>
<th>Pannes</th>
<th>Soutenances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Août 1982 - Avril 1983 Schistes</td>
<td>14%</td>
<td>7</td>
<td>13</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>Mai 1983 - Février 1985 Gneiss</td>
<td>23%</td>
<td>8</td>
<td>15</td>
<td>6</td>
<td>48</td>
</tr>
</tbody>
</table>

Coefficient d’utilisation brut :
- dans les schistes 21%
- dans les gneiss 31%

Autres résultats techniques :
- avancement journalier moyen 8,31 m
- meilleur avancement journalier dans les schistes 12,00 m
- meilleur avancement journalier dans les gneiss 30,00 m
- meilleur avancement mensuel dans les gneiss 310 m³
- m³ abattu par disque de Ø 400 mm 142 m³
- longueur de galerie soutenue par cintrages métalliques 3140 m soit 74%
- tonnage total de cintrage dont 1613 de HEB 120 et 163 de HEB 160 posés à l’intérieur du souterrain primaire
- boulons d’ancrage 32 t
- béton projeté 500 m³
- enfilages, blindages et garnissages 1052 t

2.7.2. Les 2470 m de l’attaque aval ont été ouverts du 20 septembre 1983 au 15 juillet 1984 dans des formations cristallines anciennes comportant de nombreuses zones de faible consistance pour lesquelles le calage des deux seuls patins d’ancrage de la Robbins s’est avéré délicat, la pression d’appui dépassant souvent les possibilités du terrain. Pour les faciès sains, la résistance à la compression varie de 700 bars pour les gneiss, à 1800 bars pour les microgranites, l’abrasivité Ac de 2 à 4.

La mise au point progressive d’un calage bétonné, sous les appuis, l’installation autorisée par le bon «dégagement» de la zone de travail à l’arrière de la tête du type de tunnelier, d’un petit tapis transporteur pour le déblaiement des éboulements et d’un monorail pour l’aménagement des soutènements, le rodage du matériel et des équipes, a induit une forte amélioration des rendements à partir du 6ème mois.

Alors que 384 m avaient été forés pendant la longue phase de rodage le reste de l’attaque (2081 m) a été ouvert en 5 mois, à la cadence moyenne de 19,8 m/jour.
- meilleur avancement mensuel 505 m en mars
- coefficient d’utilisation brut du tunnelier 48,4 %
- volume de roche abattu par disque 68 m³
- longueur soutenue par cintrage (HEB 100) 5 %

Le retournement du chantier sur l’amont, dont la foration débutait fin août n’a demandé qu’un mois. Les résultats obtenus jusqu’au pm 2934, sont comparables à ceux de l’attaque aval.

La traversée d’un accident géologique, pourtant de faible amplitude, dans lequel le tunnelier s’est bloqué, a alors demandé 3 mois.

Au-delà, la progression demeurait laborieuse dans une roche fracturée avec inclusion de gres et d’argile fluente engorgeant le dispositif d’extraction des déblais. Au 15.09.85, alors qu’il restait, au pm 2573 400 m à creuser, on décidait de replier le tunnelier et de lancer une contre-attaque à l’explosif à partir de la prise d’eau.

2.8. - Addition de Thiers - Expérience I -

La galerie de dérivation, de 2219 m de longueur, a été creusée, sur 2176 m, en Ø 40 mm, par Stotrabas et son Wirth T8 II. Le tunnelier remis en état après le creusement des puits inclinés de Grand Masion, a reçu une tête armée cette fois de 24 molettes monodisciques de Ø 400 mm, et d’un outil central.

La roche à forer est dure : la résistance à la compression est comprise entre 1200 et 1500 bars pour la grante précambrienne traversé de filons quartz et de lamprophyre dans les 1350 premiers mètres (Dc = 80 et Ac = 4) et dépasse 1850 bars pour les microgranites de la dernière partie (Dc = 118 et Ac = 5). La galerie est tracée en travers-bancs relativement à une fracturation principale peu intense. Les débits collectés sont faibles.
2.8.2. Le chantier a été lancé, au pm 80, en octobre 1983. Le rayon de la courbe d'attaque de la galerie a dû être porté de 150 m à 200 m, cette dernière valeur constituant effectivement un seuil pratique pour le braquage des équipements de creusement mécanique en pleine section.

Pendant les 3 premiers mois, le rendement a été fortement oblitéré par le travail en courbe et le franchissement de deux difficultés géologiques aggravées par la pente descendante (à -0,5%) de la galerie : 285 m creusés à raison de 6,20 m par jour de travail, alors que l'attaque progressait ensuite (du pm 365 au pm 2219) à la cadence journalière de 15,07 m.

Sous l'effet cumulé d'une possible fissure pré-existante et des efforts dissymétriques encaissés lors du creusement de la longue courbe initiale, l'arbre du tunnelier se rompait à 2 m (II) de la percée réalisée le 3 juillet 1984 à l'explosif.

- meilleur avancement :
 - par mois 410 m
 - par semaine 120 m
 - par jour 31,90 m
 - par poste 13,20 m
- coefficient d'utilisation brut 45%
- volume de granite abattu par disque (de 400) 76 m³
- énergie spécifique 5,83 kWh/ m³

3.- POUR APPRECIER L'ÉVOLUTION TECHNIQUE

3.1.- Une synthèse, même rapide des deux premières publications de décembre 1960 et de janvier 1964, et de la présente livraison ne pourrait éviter d'inutiles redites. On peut cependant essayer d'évaluer le chemin parcouru depuis la première tentative d'Avérolo (a) qui, en 1964-1966 semait le doute sur les possibilités effectives du creusement mécanique des roches dures en pleine section. Il a fallu alors, pour E.D.F., la remarquable réussite de ses partenaires suisses, sur le prisme incliné d'Emosson, en 1968-1969, pour que viennent, en 1970-1973, la relance et le succès avec la galerie d'Echaillon qui constituait un remarquable champ d'expérience de par la diversité géologique et mécanique des terrains à forer et qui a également permis de vérifier, en vraie grandeur, la stabilité et la rugosité hydraulique des galeries creusées au tunnelier et non revêtues.

La suite est connue et le tableau n° 2 la résume assez bien dans sa sécheresse. Personne aujourd'hui, du moins à E.D.F. ne semble plus contester l'intérêt technique, économique et humain de la méthode.

3.2.- Bien sûr toutes les difficultés ne sont pas réglées, et le seront-elles jamais ? Il n'existe pas ou si peu de creusements sans problèmes, particulièrement lorsqu'il s'agit, pour nos ouvrages d'adduction hydro-électrique, de s'enfoncer sous forte couverture et donc avec un éclairage préliminaire, sous des montagnes jeunes, comme les Alpes, au sein desquelles des passées sans consistance se trouvent coincées entre des massifs rigides et où les venues d'eau peuvent atteindre des niveaux aussi considérables qu'imprévisibles.

Cette incertitude, que l'on s'efforce naturellement d'atténuer par tous les moyens disponibles est bien une constante des travaux souterrains profonds. Il appartient donc à la méthode d'exécution d'être suffisamment versatile pour s'accomodier des inéluctables caprices de la géologie et venir à bout, à moindre frais, de toutes les difficultés. C'est bien à cela que s'appliquent, depuis 20 ans, les constructeurs et les utilisateurs des tunneliers.

3.3.- Essayons, pour notre part, de mettre en valeur, à partir de l'expérience d'E.D.F., les progrès acquis et les avances encore possibles. Ceci successivement pour le creusement des terrains durs, le soutènement, le franchissement des accidents géologiques, le prix de revient, découpage quelque peu arbitraire, dans la mesure où toutes ces données s'intercutent puisqu'il s'agit en fait de franchir avec le même équipement lourds, les formations les plus diverses de la galerie à forer et de les conforter efficacement, et ceci dans les meilleures conditions de sécurité et d'économie.

4.- LE CREUSEMENT DES TERRAINS DURS

4.1.- Grâce au renforcement de l'architecture des tunneliers et de leurs composants, et à l'accroissement des performances des outils de coupe et donc des puissances unitaires de pénétration, le chemin parcouru par la technologie des tunneliers depuis les années 60 est tel que l'on peut penser aujourd'hui qu'ils ne connaissent plus, géomécaniquement parlant, de limite «haute» d'utilisation.

La généralisation des molettes à disques, le plus souvent monodisciques, qui offre indiscrettement le meilleur rapport efficacité/prix est maintenant un fait acquis, les outils a picots étant réservés à des emplois très particuliers, comme par exemple les molettes centrales dont la vitesse de déplacement est très faible. Par ailleurs, les disques de 300 mm de diamètre qui transmettaient au rocher des poussées unitaires moyennes (par disque) d'environ 10 t. (avec des pointes instantanées de 20 t.), cèdent la place à des disques de 400 mm capables du double, et même à des disques de 450 mm (Robbins).

Un fait d'expérience assez fréquent (voir par exemple le creusement g) est venu conforter les performances du tunnelier dans les formations très dures : certains ouvrages présentent des échantillons des caractéristiques géotechniques dissuasives se révèlent en site et à l'échelle du tunnel, fragiles, ce qui constitue, on le sait, un facteur positif de forabilité.

Il reste naturellement à apprécier dans chaque cas le coût des outils, qui pour les terrains durs et/ou abrasifs, pese lourd (voir § 7.1.) sur le prix du creusement, malgré les progrès de la métallurgie des pièces d'usure et des corps de molettes dont la durée de vie a nettement progressé.

4.2.- Divers dispositifs mécanisés de manutention viennent progressivement alléger les tâches d'accompagnement du creusement proprement dit.
Cependant le changement des outils, opération clé du cycle d'avancement en terrain dur, demeure difficile, a fortiori avec des molettes de grand diamètre (une molette monodisque de 400 mm pèse plus de 100 kg), et même pénible lorsqu'il s'effectue, pratique habituelle jusqu'à ce jour, dans l'espace exigu dégagé par un recul limité du tunnelier entre le front de taille, dont la stabilité n'est pas garantie à 100 %, et la tête de coupe.

Pour améliorer la sécurité des ouvriers intervenant devant la tête, Wirth a expérimenté un bouclier vertical, incorporé à la tête pendant le forage et poussé hydrauliquement contre le front pendant le recul du tunnelier. La sureté doit être complète en toit, par exemple par des lances d'enfilage glissées entre les dents du canopy (blindage partiel) de la chambre de travail. Ces dispositions compliquées ne pouvaient constituer qu'un palliatif, en attente de l'échange des molettes par l'arrière.

Il convient donc de saluer comme un progrès considérable les dispositions constructives déjà mises en œuvre à Bramefarine (f) sur un tunnelier il est vrai relativement peu charpenté, et tendant précisément à permettre le contrôle et l'échange des outils depuis l'arrière.

La tête «creuse» du tunnelier de 4,50 m de diamètre de la figure 14 (§ 6.5.1) atteste que ce problème difficile, particulièrement pour les foreuses lourdes et pour les petits gabarits, est en voie d'être heureusement résolu.

4.3.- Les expérimentations menées depuis une décennie, notamment par les charbonnages allemands, français et américains sur le «jet cutting»: découpage de saignées par des jets d'eau millimétriques à très forte pression (2000 à 4000 bars), et sur son association avec des molettes de tunnelier, en vue de réduire la poussée sur les outils et leur usure, se poursuivent. Elles n'ont pas encore débouché sur des applications industrielles significatives en souterrain, tout au moins pour les roches dures.

4.4.- L'enregistrement des paramètres de forage du tunnelier: énergie consommée, poussée sur la tête, couple et vitesse de rotation, voire leur transmission à distance comme cela a été pratiqué au Fouget (n), ne présente plus de difficulté. Il complète utilement la fiche hebdomadaire du suivi des performances qui regroupe les résultats techniques du chantier: nature des terrains forés, débit collecté, mesures géotechniques, vitesse instantanée de foration, diagramme de marche signifiant la nature des arrêts, incidents mécaniques, avancements par poste et par jour, outils et énergie consommées, nature et volume des soutènements posés, etc.

L'exploitation, au fur et à mesure de leur production, de toutes ces données, permet d'infléchir si nécessaire la conduite du chantier de creusement. Elle autorise, de plus, des analyses statistiques sérieuse (§ 2.3.6) devant déboucher à terme sur des corrélations suffisamment fiables entre les prévisions géotechniques et les conditions industrielles de foration.
4.5.- Quelques observations au sujet du gabarit de forage:

- les conclusions 5.1 de l'article de décembre 1980 restent valables quant au diamètre minimum recommandé de 3 mètres, voir 3,50 - 4,00 m pour les mauvais terrains et les galeries de grande longueur.

- les constructeurs s'efforcent actuellement d'élargir de façon très appréciable la plage de diamètre de tête autorisée par l'architecture d'un tunnelier. Ainsi le TBS 450 de la figure 13 pourrait recevoir des têtes de 4,40 m à 4,50 m (à comparer aux 0,30 m de la plage des TB Wirth de la génération précédente). Ceci augmente d'autant les possibilités de réemploi des foreuses, au prix naturellement d'un changement de tête dont on sait qu'elle ne constitue pas la partie la plus noble d'un tunnelier (25% environ du prix d'un engin neuf).

- pour une tête déterminée, le gabarit de creusement peut être quelque peu ajusté (5 à 15 cm), par modification des supports des outils périphériques.

Pour obtenir une marge de réglage plus importante et de mise en œuvre plus rapide, il conviendrait que les outils de gabarit aient la faculté d'être coulissés sur des porte-molettes conçus à cet effet.

-quant à la perte de diamètre due normalement à l'usure des molettes périphériques, elle entraînerait jusqu'alors, le creusement avec des moyens conventionnels d'une petite niche pour l'installation d'une molette de gabarit neuve. Le tunnelier de la figure 14 est équipé d'une molette amovible réservée au recalibrage avant remplacement des outils périphériques. Elle est poussée hydrauliquement vers l'extérieur pour récupérer progressivement, après quelques rotations de la tête, la perte de diamètre puis obtenir un surgabarit de 45 mm sur le rayon pour le montage des molettes périphériques neuves.

4.6.- Le rayon pratique de braquage ne peut guère être descendu au-dessous de 200 m. L'expérience de Thiens (t) est venu rappeler qu'il n'est ni bon pour le rendement, ni pour la mécanique, de trop faire travailler le tunnelier en courbe.

Le projeteur doit s'ingénier à « redresser » au maximum le tracé des tunnels que l'on compte forer au tunnelier.

Il veillera également à éviter sauf impératif majeur, les attaques multiples qui obligent à des déplacements ou retournements du train de creusement. La longueur des attaques peut en revanche être portée à 10 km (Belledonne) et même quelque peu au-delà, à condition toutefois que le gabarit soit suffisant pour permettre une desserte fluide du chantier.

4.7.- Au sujet du profil en long des tunnels, observons qu'il convient, pour les ouvrages subhorizontaux, de privilégier nettement les attaques montantes, les inconvénients des attaques descendantes étant probablement aggravés par la lourdeur et l'encombrement des équipements de foration.

Et pour en terminer avec le contexte géométrique de l'utilisation des tunneliers, rappelons ici brièvement la supériorité écrasante de la méthode pour le creusement, en montant, des puits inclinés de grande longueur, objet de l'article 1984.

5.- LES ROCHES DE QUALITÉS MOYENNES LE SOUTENEMENT

5.1.- Les conditions spécifiques du soutenement

5.1.1. Le gain très substantiel de confortement à imputer au creusement mécanique en profil effectivement circulaire et non désorganisé par l'explosif, est maintenant un fait acquis. Son poids économique sera confirmé en § 7.4.

5.1.2. La deuxième observation atténue légèrement la portée de la première. Elle concerne certaines manifestations d'altération différée des excavations ouvertes mécaniquement. Nous avons observées surtout sur le tunnel sous Bel donne (e), où, en présence de fortes contraintes naturelles, ont pris naissance plusieurs années après le creusement, des écaillages localisés et évolutifs des gneiss rigides, et également sur le puits de Super Bissorte (1), dont plusieurs zones ont nécessité des travaux confortatifs complémentaires avant la pose du blindage de conduite forcée, le tunnel du Lautaret (q) et la galerie de Ferrière (r) dont le soutènement a dû être localement fortement renforcé quelques semaines après le déchargement. Ce phénomène reste assez limité et n'apparaît le plus souvent que lorsque s'écoule un délai important entre le creusement et la mise en place du revêtement bétonné. Il doit cependant conduire à une certaine prudence dans la définition du soutènement et du revêtement des belles excavations fournies par les tunneliers.

5.1.3. S'agissant précisément de l'effet des contraintes géotechniques élevées, il ne nous est pas apparu que les choses soient aggravées par un creusement mécanique, sans que les limites de cette technique soient, en ce domaine encore clairement établies.

A l'exception des manifestations d'écaillage différences (§ 5.1.2) et des accidents géologiques (§ 6), aucun des 20 tunnels sur lesquels s'appuie notre expérience n'a été le siège de convergences suffisamment importantes pour compromettre la faisabilité du creusement. Ainsi, l'attaque aval de Belledonne (e) a été normalement menée à son terme, sous 2000 m de couverture rocheuse, sans que la progression ne fût ralentie (sauf quelque peu dans les 500 derniers mètres du massif grana tique central), par la décompression, qui selon les prévisions pessimistes devait frémer fortement et même bloquer le tunnelier en l'absence de la fixation qui facilite l'adaptation des excavations ouvertes à l'explosif.

Ce qui importe en fait c'est le choix du soutènement et du moment optimal de son application: soutènement rigide ou souple, blocage immédiat du terrain ou non, etc. De plus, lorsqu'est atteinte une certaine convergence, il est prudent de prendre une marge de sécurité sur le diamètre de foration, ce qui ne doit pas être du creusement, soit en cours de route en modifiant, comme indiqué en § 4.5, les supports des outils de gabarit.
5.2.- Les soutènements utilisés

5.2.1. La tendance déjà notée, à la mécanisation des diverses manutentions, concerne au premier chef le soutènement. L’érector de cintres métalliques le plus classique est constitué par un anneau tournant sur lequel on assemble successivement les éléments du cintre qui est serré au rocher, avec éventuellement interposition d’un treillis métallique ou de plaques de garnissage.

Une protection de sécurité grillagée ancree au toit s’impose pour les tunnels de grands diamètres (f, o) même si la roche apparaît de bonne qualité.

Les soussoirs préfabriqués de radier facilitent le calage des cintres dont les pieds étaient à Grand’Maison § (9) soudés sur une plaque métallique scellé dans le soussoir.

5.2.2. Le confortement systématique de la galerie en arrière de la tête par un cuvelage continu en soussoirs, constitue certainement une solution prometteuse pour les tunnels affrontés à des natures de terrain très variées. Pour les ouvrages d’aménée d’eau, il reste à confirmer la possibilité d’établir ainsi, dès le creusement, le revêtement définitif, tout en assurant une bonne continuité hydraulique. A vérifier également les possibilités de prise en charge par le cuvelage des poussées transmises par des appuis transversaux ou des vérins longitudinaux (voir § 6).

5.2.3. Pour la pose des boulons d’ancrage à proximité de la tête, on installe (n, o, r, p) de part et d’autre du corps du tunnelier, des marteaux perforateurs pivotant sur leur base pour ne pas arrêter la progression du creusement. Le débattement de ces «stoppeurs» est cependant limité latéralement et le recours à un bouloignage systématique et plus élaboré nécessaire, soit un portique spécial de foration placé au-dessus du corps du tunnelier lorsque le gabarit du tunnel l’autorise, soit le report du bouloignage à l’arrière du tunnelier proprement dit, donc à 12 ou 15 m du front, ce qui enlève beaucoup d’efficacité à un tel confortement.

5.2.4. Pour éviter des retombées sur les organes sensibles de la machine, on préfère également reporter à l’arrière de l’installation le béton projeté qui n’est plus utilisé alors qu’en complément du soutènement primaire.

On observera que dans ces conditions la «Nouvelle méthode autrichienne de creusement», bien établie aujourd’hui, même si des ajouts successifs l’éloignent beaucoup du béton projeté légèrement armé de l’origine, ne trouve pas son meilleur domaine d’emploi derrière les tunneliers. Il apparaît plus commode et plus efficace de poser immédiatement derrière la tête, avec un érecteur mécanique, soit des cintres métalliques plaqués au rocher sur un grillage ou sur des plaques de garnissage, soit des soussoirs préfabriqués. Ceci d’autant plus, rappelons le, que le cadrage peut être sensiblement plus léger que pour un avancement à l’explosif.

5.3.- L’architecture des tunneliers

Certaines dispositions constructives ont une incidence directe sur la progression des tunneliers au travers des formations instables.

5.3.1. Les principaux constructeurs ont maintenu adopté, à la suite de Robbins, les têtes de coupe plates, (ou légèrement coniques pour conserver un effet favorable de centrage), aussi étroites que possible, afin d’autoriser la pose des soutènements au plus près du front de taille.

5.3.2. L’intérêt des jupes de protections, totales ou partielles, fixes ou télécopables couvrant provisoirement la chambre de travail derrière la tête, en attente du soutènement, sera évalué en 6.

5.3.3. La surface totale d’appui au terrain des patins (grippers) doit être suffisante pour ne pas appliquer au rocher des pressions excessives (cf. l’éclatement systématique des gneiss de Grand’Maison (o) sous les patins du tunnelier) et leur largeur, au contraire, limitée pour qu’ils s’inscrivent entre les cintres métalliques que l’on veut pouvoir poser si la nécessité s’en fait sentir, à un écartement réduit, lié naturellement à la longueur de la passe de creusement (en général 1 ou 2 cintres par passe).

Le chantier est parfois amené à mettre au point, comme au Pouget (n) ou à Montfermy (s), des dispositions propres à reconstituer rapidement, lorsqu’elle fait défaut, une portance suffisante du terrain d’appui.

5.3.4. Le début relatif à l’architecture des ancrages n’est pas clos. Certains estiment qu’une disposition horizontale des patins est géomécaniquement préférable, en particulier Robbins (2 grippers) et Demag (2 x 2 grippers).

Les doubles sections cruciformes d’appui (Wirth, Jarva, 2 x 4 grippers) améliorent par contre la stabilité de la foreuse dans les zones hétérogènes et transmettent au terrain des pressions réduites.

Les 3 sections d’appuis en croix (3 x 4 grippers) des nouveaux TBS Wirth améliorent encore la stabilité et laissent une grande liberté au positionnement des cadres de soutènement. En effet, les deux premières sections jumelées chevauchent normalement l’avant dernier cintre, et la position de la troisième est réglable par des vérins auxiliaires (dans une plage de 1,20 m pour le tunnelier de la figure 13).

Un bon «dégagement» de la zone de travail derrière la tête, facilite en particulier la mise en place rapide du soutènement, des radiers préfè-

Fig. 13 - Corps extérieur du nouveau TBS III 4.50 de WIRTH comportant 3 sections d’appui en croix. La position longitudinale de la 3ème est réglable par vérins.

Outside part of the new WIRTH TBS S III, Ø 4.40, with 3 crossed supporting sections. The longitudinal position of the 3rd section can be adjusted by means of jacks.
briqués, les changements d’outils, les poses de voies et de canalisations, le dégagement des petits éboulements et leur évacuation par un tapis transporteur comme cela a été pratiqué à Mont-Fermy (s). Les tunneliers comportent, comme les Robbins, un nombre d’appuis réduit, reprennent alors l’avantage. Wirth a réagi en basculant vers l’arrière et en inversant (n) les vérins de poussée.

La suppression des grippers, lorsqu’est mis en œuvre, soit un revêtement continu en vousoir sur la tranche duquel viennent se buter les vérins de poussée, soit un anneau de serrage (§ 6.5.1.), éluide les difficultés d’appui au terrain et dégage effectivement la chambre de travail. Cette dernière observation constitue une bonne transition avec les problèmes liés à la traversée des terrains de faible consistance.

6.- LES TERRAINS TRES MEDIocreS ET LES ACCIDENTS GEOLOGIQUES

6.1.- C’est le franchissement des terrains éboulées, souvent gorgés d’eau qui pose encore problème. On sait que pour de telles difficultés, il n’existe pas de panacée. Il convient, au coup par coup, de déterminer, en fonction des conditions géotechniques et hydrogéologiques et du matériel disponible, la méthode d’avancement la mieux adaptée.

Pour les tunneliers, les efforts conjugués des constructeurs, des entrepreneurs et des maîtres d’ouvrages tendent précisément à donner une plus grande facilité d’adaptation à une technique dont la relative lourdeur constituait un handicap certain de l’époque. Les difficultés plus ou moins imprévues et évolutive. De fait, les incidents de blocage ou enssevelissement de tunneliers qui n’étaient pas exceptionnels aux premiers ages de la méthode, nécessitant de couteuses déviations de sauvegarde par contournement latéral, sont beaucoup plus imposables aujourd’hui.

N’oublions pas par ailleurs de mettre au crédit des foreuses «pleine face», le blindage permanent du front de taille, limitant au moins partiellement l’effet des débouillages soudain d’eau, de blocs et de sédiments. La difficulté est plutôt d’éviter d’interrompre le travail jusqu’au concurrence de la tète de forage.

6.2.- Observons alors que le succès dépend d’une condition essentielle: l’éclairage rapproché de l’avancement par des sondages qui seul permet de modifier en temps opportun le mode de progression de l’attaque (réduction de la poussée, pose de soutènements à priori, renforcement du soutènement déjà posé,...). Le creusement de la galerie sous Belledonne a montré qu’il était possible de confier ce pilotage à des forages destructifs de 30 à 40 m de longueur, ouverts au superfuseau pendant l’arrêt journalier pour entretien des molettes, donc sans incidence sur la cadence moyenne d’avancement.

L’enregistrement des pararamètres techniques des sondages pilotes affine encore la connaissance du terrain et la conduite du chantier (n, o), mais le constat immédiat des conditions pratiques de forage :

ques de forage : changement de la vitesse instantanée, de la couleur et de la granularité des sédiments, arrivée d’eau, augmentation de la pression hydrostatique, éclaire : déjà largement le chef mineur.

Le forage pilote s’impose également pour les terrains de qualité intermédiaire que nous envisageons précédemment, en même lorsque la révision géologique laisse subsister une doute, comme c’est toujours le cas sous forte couverture, pour la totalité du tracé du tunnel.

6.3.- Ce sondage peut constituer l’amorce d’un rabattement par drainage de la nappe, opération qui nécessite fréquemment un dispositif plus complet de forages en aurorales. Chaque fois que l’on bute sur un accident gorgé d’eau, on doit en effet, en priorité, quelque soit la méthode, s’efforcer de réduire la charge hydrostatique.

Une parade complémentaire consiste à recourir à un traitement spécial d’injection destiné à consolider et à étaîcher les roches éboulées. Dans certains cas particuliers, on peut chercher essentiellement l’étanchéité au sein d’une nappe que l’on veut préserver. Avec les tunneliers à tête complète, des précautions doivent être prises pour écart er le risque d’un scellement de la tête au front de taille. Les tunneliers «ouverts» sont mieux adaptés, par exemple pour le TB Bouygues dont le moindre encombrement, facilite d’autre part l’installation d’une sondeuse ou d’un marteau lourd sur un des bras de forage, et des matériaux d’injection.

Une fois clairement admis qu’il n’est ni réaliste, ni économique de changer une machine foreuse au cours du perçement *, l’évolution actuelle se cristallise schématiquement autour de deux options :

- ou bien l’on fait confiance au tunnelier moderne armé pour creuser rapidement les terrains les plus durs, et on l’accompagne de procédures élaborées de soutènement.
- ou bien l’on recherche une foreuse idéale, dite parfois bivalente ou encore universelle, conçue pour franchir avec les mêmes chances de succès les terrains éboulées et les roches dures.

6.4.- Traversée des accidents géologiques par les tunneliers classiques :

L’attaque aval de la galerie sous Belledonne qui a dû franchir 13 passées de gneiss mylonitises et humide demure en la matière, notre expérience la plus fruitueuse.

Après que le tunnelier se soit successivement planté dans deux accidents inattendus de 40 et 13 m d’épaisseur, ayant demandé des tertres de contournement et le sauvetage du tunneler par l’avant et des délais d’exécution de 4, 5 et 2 mois, la mise au point du sondage pilote systématique dont l’intérêt a été rappelé en § 6.2, a effectivement été le retour de tels avatars. Il était alors possible, averti par ce dernier, de diminuer la poussé et la vitesse de progression à l’approche des 11 dernières zones de mylonite, d’entreprendre à priori la pose de soutènements métalliques lourds derrière la tête, et de franchir ensuite les accidents en progression directe, à l’abri d’enfilages traditionnels joints selon les deux techniques appliquées respectivement aux franchissements courts (< 5 m) ou longs, schématisées au § 3.5.6 de l’article de décembre 1960.

* ce qui n’exclut pas le recours éventuel, provisoire ou délinatif à l’explosif, ou encore une contre-attaque venue de l’autre extrémité du tunnel.
L’avancement moyen ainsi réalisé dans ces 11 traversées = 1 m/jour, ne pénalise pas de façon flagrante le tunnelier relativement à un chantier conventionnel.

D'autres méthodes d'accompagnement des tunneliers pour terrain dur, à la traversée des zones éboulées, ont été imaginées et appliquées sur des chantiers étrangers, en particulier miniers, comme par exemple la pose d'un soutènement métallique de gabarit nettement accru, en profil semi-circulaire, permettant de passer par dessus la tête ou même entourant le tunnelier en profil fer à cheval.

Demag envisage des tunneliers à tête fortement inclinée vers l'avant, ce qui améliorerait naturellement beaucoup la stabilité du front. Mais cette pratique pose des questions difficiles : transmission des efforts moteurs, section elliptique ...

Une jupe métallique de protection ajoutée en peigne (canopy) ou pleine protégeant le toit de la chambre de travail ou toute la section accompagnant souvent la tête de foration, en vue de faciliter la pose, à son abri, du soutènement ou le report de ce dernier quelques mètres à l'arrière. Leur intérêt n'est pas évident pour les zones très médiocres et l'on pourrait citer plusieurs exemples (notamment la Coche (d), Brametfarine (f)) de jupes coincées et découpées au chalumeau. Mieux vaut dans l'option de franchissement avec un tunnelier pour terrain dur qui est pour l'instant la nôtre, s'affranchir des protections illusoires et encombrantes et poser les cintres de soutènement, les blindages de garnissage, les enfilages immédiatement derrière la tête et au contact direct du terrain.

6.5. - Conception d'une foreuse universelle

La foreuse «tous terrains», idéale, sur laquelle travaillent les bureaux d'études, serait plutôt concue, à l'inverse de l'option précédente, comme un bouclier pour sols alluvionnaires, renforcé mécaniquement et armé pour les roches coriaces.

Une telle machine s'accompagne normalement de la pose simultanée d'un cuvelage, solution déjà évoquée en § 5.2.2. En tout état de cause, les grippers transversaux habituels qui risquent de poindre les terrains peu résistants doivent laisser la place à des dispositions limitant les pressions d'appui.

Les méthodes de creusement des tunnels urbains dans la nappe alluviale, auxquelles la dernière génération des boucliers mécanisés a pression de boue, d'air comprimé ou de sol, vient de donner une nouvelle impulsion, n'entrent pas dans notre propos. Le congrès AFFTES de Lyon de novembre 1984 en a fait une excellente synthèse.

Les deux exemples concrétisés par les figures 14 et 15 situent l'évolution actuelle des recherches sur les tunneliers «mixtes».

On remarquera tout d'abord que les deux têtes de coupe armées de molettes pour terrain dur, sont pratiquement identiques : même forme légèrement conique, même type de molettes monodiscues, visitables et renouvelables par l'arrière. Des nervures annulaires en métal dur renforcent la tête entre les outils, protègent les molettes et évitent que des masses importantes du front ne s'ébouillent sur le radier.

6.5.1. Les plaques d'usure du racleur de déblais du tunnelier Wirth de la figure 14 peuvent, comme les molettes, être changées depuis l'arrière. Ce tunnelier du type de ceux qui sont entrés en action sur l'anneau souterrain du nouvel accélérateur à particules du CERN, comporte deux jupes de protections, un bouclier de tête fixe traversée en calotte par deux patins de guidage et dont le calage en niveau peut être réglé hydrauliquement, et un anneau télescopique bloqué hydrauliquement au terrain (anneau de serrage) et sur lequel s'appuient les vérins de poussé.

Le revêtement en soussoir béton est posé à l'abri de la jupe prolongeant l'anneau de serrage. Entre les deux anneaux, deux vérins de torsion corrigent la rotation éventuelle du bouclier de tête. Enfin la butée au terrain de l'anneau de serrage est complétée, si nécessaire, par des vérins s'appuyant sur le soussoir de radier. Le rayon de braquage minimum est égal à 500 m.
6.5.2. Le projet Robbins de la figure 15 est plus proche du tunnelier universel. Il s’agit effectivement d’un bouclier mécanisé à sol confiné, comportant une tête de coupe pour terrains durs. Une étanchéité périphérique piège les venues d’eau avec les éclats arrêtés extraites par une vis sans fin sous pression d’air comprimé. La jupe arrière du bouclier est réduite à la longueur strictement nécessaire pour couper les vêpres de poussée longitudinales et le dernier anneau de vousoirs. On s’affranchit ainsi des raidissements introduits par les longues jupes de protection.

Il reste bien entendu, comme pour tous les boucliers de ce type, à régler les délicats problèmes d’étanchéité. Par ailleurs, lorsque la longueur cumulée des grosses difficultés ne représente qu’un faible pourcentage de la longueur d’un tunnel au rocher, comme c’est généralement le cas pour les galeries hydro-électriques, les performances en terrain dur d’une telle machine et le poids économique de la pose systématique d’un revêtement préfabriqué doivent être évalués, cas par cas, à partir de la prévision géologique. Le bilan est naturellement différent s’il apparaît que le cuvelage de soutènement peut constituer le revêtement définitif du tunnel.

En attendant l’expérimentation industrielle d’une telle machine universelle ou de toute autre méthode encore à imaginer, l’option réaliste nous semble être la mise au point de techniques pratiques de plus en plus performantes pour le franchissement des accidents géologiques avec les tunneliers conçus pour traverser à cadence élevée les roches de bonne qualité. Pour l’instant on retiendra de l’évolution vers la mixité des méthodes mécanisées de creusement, l’intérêt du soutènement au plus près du front de taille du cuvelage en vousoirs assurant un blindage efficace et continu, voire le revêtement définitif, et des nouvelles procédures d’ancrage des tunneliers au terrain.

7. LE PRIX DE REVIENT

Une fois située l’évolution technologique de la formation au tunnelier, il convient d’aborder les données économiques qui, en dernier ressort, décrivent des choix d’investissement et sanctionnent le résultat du chantier.

7.1.- La décomposition des coûts unitaires de creusement en roche dure donnée en décembre 1980, pour une hypothèse d’amortissement de l’équipement sur environ 10 km de tunnel, reste grossièrement valable:

- 40 à 50% pour les frais fixes qui couvrent essentiellement les charges d’amortissement du tunnelier et pour une part presque égale des matériels d’accompagnement.

Cependant, et malgré le défaut de continuité des programmes et l’absence de normalisation, les possibilités de réemploi des tunneliers s’accroissent, allégeant du même coup les frais fixes et le délai de lancement du chantier (il faut environ un an pour construire un tunnelier). Ainsi, des 20 creusements, objet de la présente synthèse, 6 seulement (a, c, d, e, n et o) ont été attaqués par des tunneliers neufs. Le TB Wirth acheté pour la galerie d’Echaillon (c) à d’ores et déjà à son actif, après Belledonne aval (e) et Ferrières (r), 18,500 km de creusement en Ø 600 m, en roches cristallines et le Robbins 123-133 de Montfermy (s), 26 km en Ø 3,80 m.

- 15 à 20% pour les charges de main d’œuvre qui interviennent moins que pour une formation à l’exploitation. La prise en compte de toutes les manutentions annexes par des dispositifs mécaniques, devrait encore réduire ce ratio.

- 30 à 45% pour les fournitures qui constituent donc un des facteurs déterminants du prix de revient, en particulier l’énergie électrique (5 à 10%) et surtout les outils de coupe (15 à 35%).

Les progrès indiscutables de la métallurgie des molettes ont plutôt, semble-t-il, permis pour l’instant l’extension de la plage d’utilisation des tunneliers vers les roches les plus coriaces, qu’un gain appréciable sur les coûts d’usage. Les utilisateurs sont par ailleurs enclins à penser que le monoéprouage des constructeurs ne les excite pas à inféchir à la baisse le prix de leurs outils.

7.2.- La cadence industrielle d’avancement, on le sait, a une incidence directe sur le prix de revient du mètre de tunnel foré. S’il est malaisé de qualifier de façon rigoureuse et homogène les renseignements moyens des attaques, le tunnelier n’en autorise pas moins des résultats remarquables et en progrès constant, au moins dans les massifs relativement homogènes. On notera simplement, à titre d’exemple, la progression moyenne de 500 m par mois de 20 jours, du tunnel du Lautaret (q), et des cadences, ramenées à la journée de travail, comparables pour le puits CF 2 de Grand’Maison (j)。

7.3.- Même si les problèmes posés par le franchissement des terrains très médiocres méritent encore des efforts patients de recherches appliquées, il est raisonnable de considérer, dès maintenant, que les tunneliers peuvent aborder ces terrains - à la condition expresse d’une couverture rapprochée de l’avancement, par le freinage pilote -, avec des chances, du même ordre que celles des chantiers conventionnels. Le résultat financier de tels franchissements ne devrait donc souffrir que de la « rigidité » introduite par la machine foreuse.

7.4.- Elargissant le bilan économique de la galerie au produit fini, nous nous devons de rappeler, à nouveau, les gains souvent déterminants de soutènement et de revêtement amenés par une formation mécanique. Une excellente démonstration en avait faite sur la galerie d’aménée en charge d’Echaillon (c): le volume de soutènements prévu à l’estimatif à été réduit de 70% et le revêtement bétonné à été économisé sur 2250 m, soit 52% de la longueur de la galerie.

Les économies estimées pour les autres chantiers répertoriés varient largement en fonction des données géomécaniques et du gabarit d’extraction. Cependant, elles ont justifié dans chaque cas, pour une part importante, le recours à cette technique et ceci tout spécialement lorsque le franchissement des zones instables aurait manifestement nécessité, en méthode conventionnelle, le passage en section divisée (n, o, r).

* On sait que l’entreprise autrichienne Ibbau A.G. a creusé un TB II Atlas Copco Jarva de 63,80 m, les 6700 km de la galerie de Wölla dans des roches cristallines à la cadence moyenne de 35 m par jour avec un mois (31 jours) de 1261 m.
Mieux encore, le creusement des ouvrages de maîtrise des eaux sous l'appui rive gauche du barrage de Grand'Maison a créé l’occasion d’un test comparatif industriel exceptionnel.

En effet, des deux ouvrages de section comparables, parallèles, très voisins (20 m d’axe en axe) et donc tracés au sein des mêmes formations géologiques: gneiss, lias, contact triasique, schistes verts, la dérivation provisoire (DP) a été forcée au tunnelier au stade des reconnaissances (cf 37 de l’article de décembre 1980), l’autre, la vidange de fond (VF) à l’explosif lors des travaux définitifs.

L’article de J.F. Tourney et P. Castaing, référencié dans la bibliographie, développe le bilan qui a pu être établi à cette occasion. Les chiffres que nous retranscrirons ici, pour la seule phase de dérochements, valent mieux que de longs commentaires:

<table>
<thead>
<tr>
<th>DP tunnelier</th>
<th>VF explosif</th>
</tr>
</thead>
<tbody>
<tr>
<td>avancement moyen (m/jour)</td>
<td>18,65</td>
</tr>
<tr>
<td>cintres métalliques (kg)</td>
<td>0</td>
</tr>
<tr>
<td>plaques et grillages (kg)</td>
<td>474</td>
</tr>
<tr>
<td>bouillons d’ancrage (kg)</td>
<td>292</td>
</tr>
</tbody>
</table>

7.5.- Pour offrir à l’appel d’offres des chances égales aux deux techniques de base, explosif et creusement mécanique, il importe donc, comme le pratique E.D.F. depuis Echaillon, de régler le creusement par des prix unitaires forfaitaires excluant, sauf mauvais terrain, la prise en compte des hors-projets et d’établir deux détails estimatifs distincts mettant au crédit du tunnelier les économies de matière qui peuvent équitablement en être attendues.

De nombreuses réflexions conduites depuis plusieurs années en vue d’obtenir un meilleur partage contractuel des risques pour les travaux souterrains, c’est-à-dire, de diminuer le risque souvent anormalement élevé assumé par l’entrepreneur, tout particulièrement lorsqu’il opte pour un creusement mécanique, se dégagent plusieurs dispositions pratiques qu’il convient d’encourager:

- la contractualisation claire et exhaustive de l’acquisition des reconnaissances géologiques et géotechniques,
- les formules d’écretement, du coût réel de l’usure des molettes, au-delà d’un certain seuil de consommation. E.D.F. les utilise depuis Arc-isère,
- l’établissement à l’appel d’offres, d’un forfait d’amortissement du tunnelier pour le tunnel considéré, et de forfaits journaliers d’immobilisation du chantier pour des motifs,
- la recherche de formules liant la rémunération du creusement à l’avancement journalier moyen et/ou à la vitesse «instantanée» de pénétration prise comme critère industriel de forêtabilité ((P = Po + P1 (V moy., Vt)).

La meilleure façon d’apprécier de telles dispositions, propres à approcher effectivement l’équité contractuelle, est naturellement de les mettre progressivement en œuvre sans arrière pensée. La vérité des prix en dépend directement, et aussi la qualité des relations entre entrepreneurs et maîtres d’œuvre. Les travaux souterrains exigent en effet singulièrement lorsque l’option creusement mécanique alourdit les aléas financiers, la collaboration éclairée, compétente et confiante de toutes les parties prenantes de l’opération.

7.6.- Au-delà des résultats techniques et économiques qui ont pu justifier l’option tunnelier, il n’est pas possible de terminer cet article sans évoquer brièvement l’amélioration des conditions de travail et de sécurité des mineurs. Concrètement, l’étude statistique menée par les deux longues attaques de la galerie sous Belle-donne, creusée respectivement à l’explosif et au tunnelier, mettait en évidence en faveur du creusement mécanique, un rapport de 1/4 du «taux de fréquence» des accidents du travail.

Il s’agit bien là, de l’un des enseignements majeurs du parcours de 60 km que nous venons d’effectuer ensemble au travers des galeries hydro-électriques dont la foration au tunnelier a, à ce jour, été pilotée par Electricité de France.

BIBLIOGRAPHIE

G. MARIN - Industrie Minérale - Les Techniques - décembre 1980
Les expériences industrielles de creusement au tunnelier pilotées par Electricité de France

G. MARIN - Industrie Minérale - Les Techniques - janvier 1984
Creusement au tunnelier des puits inclinés de grande longueur

E. SAGE - Tunnels et Ouvrages Souterrains juillet-août 1977
Aménagement E.D.F. d’Arc-Isère - Franchissement d’accidents géologiques dans une galerie exécutée au tunnelier

G. MARIN - Tunnels et Ouvrages Souterrains septembre-octobre 1978
Le franchissement des accidents géologiques

R. LECOCQ - G. MARIN - Tunnels et Ouvrages Souterrains - novembre-décembre 1979
Evaluation des pertes de charge des galeries d’aménée d’eau forées au tunnelier et non revêtues.

D. BISTER - L’HURPIN - Congrès A.I.T.E.S. Nice 1981 -
L’expérience d’utilisation du tunnelier Bouygues dans la galerie du Brévon

Réflexion sur les modalités de rémunération de la foration des souterrains au moyen de tunneliers

Aménagement hydroélectrique du Pouget

Comparaison entre les résultats du creusement de deux galeries parallèles creusées à 20 m de distance dans les mêmes formations géologiques

JF TOURNERY - Industrie Minérale - Les Techniques - janvier 1984
Les travaux souterrains réalisés sur l’aménagement hydroélectrique de Grand’Maison - Expérience de mécanisation des dérochements -