Bold and Visionary Planning of Tunnels and Underground Space

Audace et vision dans les projets de tunnels et d’espace souterrain

1 - Introduction

It usually takes a decade or two to plan, construct, and put into service big infrastructure projects such as transportation, water and wastewater systems, and other major underground projects. In addition, the serviceable life of many tunnels is often over one century. These issues create a great challenge to planners. This illustrates the great importance of careful but creative vision during planning of long term tunnel and underground space projects. Planners must consider not only lessons learned from the past but also what new concepts and innovations may develop over an extremely long time.

In medicine, the term “Tunnel vision” refers to a visual problem which is the loss of peripheral vision. One sees clearly only in the center of one’s vision but the vision around the periphery is dim and blurred. There is another definition for Tunnel Vision: that of “Narrow Mindedness” which means an extremely narrow point of view whereby people think they know the answer to a question before they study the question. This could be done either consciously or sub-consciously.

Fortunately, our tunnel planners do not experience this trait of tunnels such many of those visionary projects now under construction would not have been planned or built. Instead, we should congratulate our tunnel planners for being creative and we should re-define what the author will call “Tunneller’s Vision” which embodies the many excellent traits needed to be visionary including: Imagination, Perception, Foresight, Novelty, Learning, and the capability to meet each and every challenge.

More importantly, we should urge our planners and decision makers of not wanting to be the first to use untried techniques, even though they are excellent solutions. Once again, our industry, including our planners and decision makers, must be congratulated on creating and proposing innovations both in planning, construction, and operation in order to get the job done. We should be proud of the innovations routinely implemented by our industry. More importantly, we should urge our planners and decision makers to continue to be bold, creative, and visionary because our entire industry has “tunneler’s vision” and the capability to meet each and every challenge.
2 - Challenges posed by world population
Clearly, the world’s population is increasing at a staggering pace. In October 1999, the world’s population passed the 6 billion mark. A major factor in world demographics that is very important to tunnel planning is that, in the future, most of the world’s population will live not in rural areas, but will live in urban cities. In 1950, only about 1/3 of the world’s population lived in urban areas. By October 1999, about half of the 6 billion people lived in urban areas. The trend continues to accelerate.

As a result, cities are becoming extremely large. So large that the United Nations and other world bodies are giving special attention to those cities in which more than 10 million people live. They are called Megacities. In 2001, there were only 19 Megacities. By 2015 it is estimated that there will be about 60 Megacities and most of these cities will be in the Developing World. The trend will continue. By 2030, it is estimated that 4.9 billion people will live in cities which is 60% of the estimated 8.1 billion world population.

Planners and decision makers must realize that an enormous amount of infrastructure must be constructed not just for these cities to be sustainable, but just for them to just survive. In fact, there may not be enough tunnellers to safely construct and operate such a large number of tunnels in such a short time.

Fortunately for the underground industry, if the environment and sustainable development are considered, the underground is often the construction method of choice for much of the infrastructure. It is essential that those of us in the industry be proactive to inform the public, the media, city-officials, and planners, at very early stages of a city’s growth, of the importance of the underground to sustainable development and to quality of life. More use of underground space will be beneficial to sustainability of cities. More planning of general underground space such as living and office spaces will be important but also long tunnels will be needed to maintain the efficiency of the transportation networks between these Megacities.

What challenges do Planners and Decision Makers for tunnels and underground space face? They are not only numerous but they also change in significance with time as the process of planning develops and becomes more mature, detailed, and comprehensive. Some of these challenges are outlined in Table 1.

These, and other issues, need to be addressed early in any underground project. Again, our industry is very capable, strong, dynamic, and creative such that the industry can meet essentially any challenge.

3 - Past development of tunnelling technology
3.1 - General comments on development of tunnelling technology
The major mining and civil works schemes during ancient times and throughout the Middle Ages were, in their own right, great feats in their own time and are considered bold and visionary. Our most relevant civil engineering history, however, is in the last 150 years. In fact, the first major Alpine tunnel, the 12 km long Fréjus Tunnel which began construction in 1857, was bold and visionary in concept. Even then, the tunnelling industry met their enormous challenges by implementing several innovations. The Fréjus Tunnel was the first tunnel to develop and use 1) compressed-air drills. and 2) a predecessor of the tunnel boring machine. To construct the Saint Gothard tunnel, dynamite was introduced in 1872. Our forefathers in the tunnelling industry back then had great visions of technological goals. Their vision regularly exceeded practical limitations of technology during their lifetime. In fact, some of their visions were so advanced that our industry was not able to achieve them until the last few decades.

There were some technological advances from 1850 to almost 1950. But the development of tunnelling technology was very slow during this period. The Channel Tunnel took over a century to realize the dream, not only for political reasons but also for technical reasons. Since technological changes were slow to develop, tunnel planners knew there was not much chance of significant innovations. That might make a project feasible. This made the planners job easier. Now (2006), just the opposite is true: innovations are expected and are part of the normal competitive process. This potential for rapid development in technology and innovations must now be taken in account by planners. This opens a whole new set of visionary requirements for tunnel planner.

In the late 1960s, the author was fortunate to have been involved in pioneering work on innovative tunnel support systems at the University of Illinois in Champaign-Urbana for a project for the U.S. Federal Railroad Administration (Parker & Semple. 1972). The impetus for this work was the ambitious concept of a tunnel or series of rail tunnels from Washington DC to Boston, a distance of some 750 km. The concept was bold and visionary but was never constructed for many reasons including cost. The project team found that very few ideas were truly new; almost everything had been tried before.

Our forefathers not only had great visions when they planned tunnels but, as will be seen later, they actually tried some of these great ideas. Subsequently, progress in technology made their ideas feasible: however, usually, those ideas were put into...
practice decades or sometimes a century later (Parker, 1900).

3.2 - Pre 1950 Tunnelling Technology Development
Prior to 1900, practicing tunnel planners, designers, and contractors had great vision and developed some extraordinary concepts for tunnel construction and operation. Unfortunately, more frequently than not, they were unsuccessful, mainly because technology had not progressed far enough to support their ideas and visions. Let’s look at a few examples:

It is general knowledge that modern tunnel boring machines (see table 4) are a relatively recent development in our industry, say since the 1950s. However, the first mechanized tunnel machine was created and tried a century earlier! There was a percussion-type machine that was tried unsuccessfully on the 12 km long Fréjus Tunnel (also known as the Mont-Cenis Tunnel) from Italy to France (Stark, 1982). The second mechanized tunnel machine, also unsuccessful, was built for the 8 km long Hoosac Tunnel in Massachusetts, USA, in 1851. There were numerous attempts over the next century to build and use a form of mechanized tunnelling machine. A few were fairly successful, including machines which successfully bored a couple of km for an earlier attempt at constructing the Channel Tunnel. But, whatever the reason, technology was insufficient to permit technically and cost effective machine excavation and there was a time-span of over a century before TBMs began to become practical.

Greathead patented a tunnelling concept that consisted of a shield with water under pressure at the face, excavation using water jets, and muck being pumped out as a slurry. In 1874, there was even a chamber for breaking up cobbles and boulders. For almost a century there were a few attempts to develop machines with pressure on the face but technology was again insufficient to permit technically and cost-effective machine excavation.

Gunite, the forerunner of shotcrete, was first developed in the USA around the turn of the century when Carl Akeley invented the Cement Gun to apply mortar over skeletal frameworks of prehistoric animals for Chicago’s Field Museum. Although tried in an experimental mine in Pittsburgh in 1914, it wasn’t until 1952 on the Swiss Maggia Hydroelectric project, before tunnels were solely supported by shotcrete (Parker, 2001). Again, there was a century span between vision and practical application.

3.3 - Development of Technology: 1950 to Present
After about 1950, technology started to catch up with our vision and many of our forefather’s ideas became reality. James S. Robbins built an 8 m diameter rotary TBM which successfully excavated Pierre Shale at Oahe Dam in the USA and then pioneered the use of solely using disc cutters on a TBM cutterhead on a small diameter tunnel in Toronto. Although there was a long difficult period for hard-rock TBMs, ultimately technology permitted TBMs to overcome hard rock to where they are now routinely used to excavate most tunnels, even long tunnels. Technology is still developing for these TBMs at a rapid pace in attempts to make them capable of controlling the more difficult ground conditions.

After more than a century delay since Greathead’s patent, pressurized-face TBMs were also the benefactor of the rapid development of technology in the latter half of the 20th Century. In the 1960s, several developments took place all over the world that made these machines more feasible technically. These took place in Japan, Germany, England, Mexico, USA, Canada and elsewhere. Earth Pressure Balance and Slurry machines now are commonplace on routine projects. Now there are various concepts for handling mixed-face conditions to make machines more feasible for rock tunnels that will also pass through fault zones with differing ground conditions. Such machines are now designed to be able to be converted with some, but acceptable, effort from hard rock mode to a pressurized face mode, becoming increasingly adaptable and are even being used on longer tunnels.

Steel Fiber Reinforced Shotcrete (SFRS) was developed in the USA around 1970. The author worked on the practical development of SFRS at the University of Illinois in the early 1970s and published his results in his Ph.D. thesis in 1976 (Parker, 2001). Despite its great promise, it took another decade before SFRS became common in tunnel construction but SFRS is now routinely used (table 2).

These examples illustrate that technology has started to catch up the vision of the planners and designers. The message to the planners and designers is that our industry is very creative and can overcome any challenge. Thus, planners should be bold and daring in the planning of projects.

4 - Available tools for planners
4.1 - Previous Planners lacked the tools
In the 1950s and 1960s, planners did not have many of the advances that we now enjoy (2006). Think what planners could have done if our predecessors knew that new and innovative tools would exist when their tunnel was finally constructed. These are too numerous to cover adequately in this paper but let’s look at Table 2. Even rock bolts were just being accepted by civil engineering projects in the 1950s although they had been used successfully in the mining industry. Each of these (and the many others not listed) make tunnels
and underground construction today more technically and financially feasible. Had planners been bold and daring back in the 1950’s, many more tunnel projects would have been proposed and built in increasingly more difficult conditions. Again this is proof of the strength and creativity of our tunnelling industry. If a planner can dream it up, our industry can get it done.

4.2 - Past and Current Successes for Current Planner’s Consideration

Some of the past and current successful techniques that planners can use to assure themselves that they can be bold in their planning include those in Table 3. These are just a few of a large number of techniques and tools that Planners and Decision Makers now have to make them more comfortable as they look with vision more boldly into the future to propose and to successfully implement more tunnel and underground projects.

4.3 - Construction Technology

There are many tunnel construction and operation techniques that planners should consider for all projects, including general underground space facilities. These include the large and adaptable TBMs that have evolved over the years to cope with mixed-face conditions. Naturally, Sequential Excavation Methods (SEM, NATM) are always available when even TBMs are not appropriate, including those openings with irregular geometry. Microtunnels and Horizontal Directional Drilling methods (HDD) are now being considered as methods to supplement the construction of larger tunnels, to include pipe-roof techniques, etc. (Sterling, 2004).

There are new concepts being developed all the time for safe ventilation of tunnels (including underground space facilities and long tunnels) during construction. The development of jet fans now makes it possible to build longer road tunnels (within limits) without having to build and maintain a large fixed ventilation fans for permanent works.

4.4 - Identification of Opportunities and Risk Management

Very important among these is the recommendation that tunnel owners and planners begin to use systematic risk management principles to identify any risks in a way that directs the rest of the planning and construction process to minimize those risks. This systematic procedure must be done as early as possible in the stages of a project (pre-conceptual or idea stage). The development of Risk Registers is often done in meetings of experienced experts who identify the risks and solutions. This systematic risk management work then is carried on and updated all the way through design and construction. The risks to be considered should be broad and also include risks of cost, schedule, environment, public acceptance, adjacent owners & third-party intervention, Politics, etc., in addition to the technical risks that always immediately come to mind. The International Tunnelling Association has published guidelines for risk management in tunnelling (ITA, 2004).

Fortunately, the same concepts and tools can be used to identify value engineering ideas, as well as to identify broad ideas and opportunities (including “thinking out of the box” figure 1).

4.5 - Principles of Life-Cycle Cost and Benefits

Tunnels often remain in service for over a century. Accordingly, decisions about whether a certain infrastructure should be a tunnel, or not, should be made on considerations of Life-Cycle Cost Benefit, not Initial Capital Cost. This is a difficult concept to implement but it is important for planners and decision makers to avoid the pitfall of decisions based on initial capital cost. Finally, using principles similar to those used in Risk management, the likely cost of a tunnel or underground facility and also its planning and construction schedule should be developed and repor-
ted as a range, not as a single number. This has been done very successfully on several projects such as the Alaskan Way Viaduct Replacement Project in Seattle, Washington, USA (Reilly, 2004)

Obviously, the life-cycle costs should include future operational and maintenance costs. However, the cost analyses should also include realistic allowances for equivalent financial benefits from environmental and social improvements associated with tunnels.

5 - Visionary, bold and daring tunnel concepts

5.1 - Current Visionary Concepts Being Implemented

There are many innovative tunnel concepts that have evolved because the project planners were highly creative and “thought out of the box”. These include the A86 road tunnel project in Paris. By changing the rules and requiring all vehicles that use one of their tunnels be less than 2 m high, the owner-concessionaire is able to fit 4 lanes of traffic plus 2 break-down lanes (in a double-deck configuration) in a 11.6 m-outside-diameter tunnel. There is even a possibility for future expansion to have 3 lanes on each deck for a total of 6 lanes in a tunnel that, at least in the USA and elsewhere in the world, car only fit 2 lanes of traffic. That makes the cost of those tunnels per km per lane on the order of 1/2 to 1/3 of the cost for traditional configurations. Moreover, such a tunnel can be constructed using more readily available standard size TBM's in a shorter construction time and with less disruption to the public.

In Seattle, a 50 year old viaduct which follows the waterfront was damaged by an earthquake and needs replacing. Also, the seawall just beneath the viaduct also needs replacing. Planners and decision makers are considering a double-deck cut and cover roadway whose outboard wall will be designed to be the new seawall. This new structure will replace both the viaduct and the seawall with one structure with an overall savings in cost, schedule, and reduced disruption to the public. Moreover, the cost would be shared by both road and waterfront authorities.

Another innovative concept is the SMART tunnel project in Kuala Lumpur (figure 2). This double-deck tunnel is specially configured to handle both auto traffic and floodwater. During low and medium flows, water flows beneath the lower deck while cars are still travelling through the tunnel. However, when a very big flood occurs, cars are removed and the flood waters are passed through the entire tunnel including the roadway. This way, the public gets two end uses for the tunnel for a price and construction disruption that is less than that of two separate tunnels. Moreover, the cost of the tunnel is shared by two groups making each easier to afford. The concept of using tunnels to store wastewater during a storm, such as the Chicago TARP (Tunnel and Reservoir project) and other storage projects, is another dual use of tunnels.

5.2 - Future Visionary Thinking

All of the proposed long ocean tunnels in the planning stage now (2006) fall into the category of visionary and bold tunnels as was the Channel Tunnel for over a century. Like the Channel Tunnel, the author believes that technology will be developed to make the tunnels currently in the planning stage feasible as well.

The Swissmetro is a bold concept developed for a very high speed transportation network in Switzerland which has been extended conceptually to other parts of Europe. Maglev trains would be propelled at very high speed through tunnels in a partial vacuum. A comparable scheme for North America, the Americanmetro has been proposed by Swartzwelter (2003). A network of tunnels between major cities would be constructed for very high speed (1000 km/hour) transfer of people and goods.

Finally, a Submerged Floating Tunnel (SFT, figure 3 and table 5) has been proposed several times in various parts of the world but never built. Conceptually, the SFT can be thought of as a submerged bridge that uses the natural oscillations of the ocean to propel the tunnel in the same way that a ship floats. The Swissmetro is a bold concept developed for a very high speed transportation network in Switzerland which has been extended conceptually to other parts of Europe. Maglev trains would be propelled at very high speed through tunnels in a partial vacuum. A comparable scheme for North America, the Americanmetro has been proposed by Swartzwelter (2003). A network of tunnels between major cities would be constructed for very high speed (1000 km/hour) transfer of people and goods.

Table 4

<table>
<thead>
<tr>
<th>Evolution des machines de creusement à pleine section</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Premiers essais au tunnel du Mont Cenis (1846) et au tunnel Hoosac (1851)</td>
</tr>
<tr>
<td>• La technologie ne réussit qu’après 1950, à Oahe malgré de très nombreux autres essais</td>
</tr>
<tr>
<td>• Le confinement du front date des brevets de Greathead en 1874 (abattage par jets d’eau, marinage en suspension, chambre à cailloux)</td>
</tr>
<tr>
<td>• 1964, premier tunnelier Robbins à front sous air comprimé au tunnel Etoile-Défense du RER</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Concepts visionnaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tunnels à usages multiples</td>
</tr>
<tr>
<td>• Services publics en souterrain, avec parcs et bâtiments au-dessus</td>
</tr>
<tr>
<td>• Utilisation de l’espace au-dessus des portails</td>
</tr>
<tr>
<td>• Usages multiples des tunnels de transport, dont les fibres optiques</td>
</tr>
<tr>
<td>• Récupération de l’eau d’exhaure, de sa chaleur</td>
</tr>
<tr>
<td>• Laboratoires d’essais, Deep Underground Science and Engineering Laboratory</td>
</tr>
<tr>
<td>• Cheminées d’aération créatives</td>
</tr>
<tr>
<td>• Autres concepts créatifs, réemploi du marinage, outils refroidis à l’eau …</td>
</tr>
</tbody>
</table>
be a lot shorter tunnel which gives much greater flexibility in locating tunnel alignments & portals. SFTs are a perfect example of “thinking out of the box”. It is so creative that one can allow your imagination to soar on these types of projects. Recently, SFTs have been identified by the Discover Channel as one idea for a crossing of very large body of water or maybe even an ocean. Such a concept has many non-technical obstacles which may prevent such a project to get farther than the conceptual stage. However, SFT engineers have identified the major issues to address to make such a concept work from a technical standpoint (Ostlid. 2006). The author admits that some of these concepts may seem outrageous when first heard. However, the first three projects listed in section 5.1 above either are in planning and construction or are already built.

5.3 - Impact of Issues and Events Outside of the Tunnelling Industry

Many issues and events outside of our industry will have a significant impact on our planning for tunnels. Some of these issues we do not even know about yet but one of these is the price and availability of oil. There have been numerous claims over the past decades that the world would run out of oil, or otherwise cost too much, and that other fuels will be necessary. This has not happened yet but may happen, if nothing else, because of greatly increased demand for oil by developing countries. So there is a greater chance that the world will need other fuels, possibly to include hydrogen fuel cells or a hybrid.

Interestingly, the fuel cell is another concept that was invented in 1839 but did not gain any real practical use until used by NASA for space travel. The concept is being worked on by many countries and in the USA; there are several local and regional agencies which have fuel cell or hybrid technology as a test. When hydrogen is the fuel, the only emission is water.

Hybrids are fast gaining popularity both in additional research and in practical applications by forward thinking and visionary travellers. Some use different fuels which may impact tunnel ventilation systems in various ways. Some, however, charge large electric batteries which, when used to propel vehicles through tunnels, would drastically reduce ventilation demands especially in long tunnels.

It may be preposterous to think that the internal combustion engine may be replaced or metamorphosed into something better, but stranger things have happened even within the author’s lifetime such as the development of rotary phones, jet engines, space travel, television, computers, air conditioning, cell phones etc. The author is not predicting such a transformation in transportation may take place but one should think of what effect it would have on the design of the ventilation system and the operation of the tunnels if it were to take place. More likely, in the foreseeable future, some hybrids will become popular and the gasses our tunnel ventilation systems must deal with may decrease or may not increase as fast as predicted. Another concept that may affect future tunnel planning is related to propulsion technology such as Maglev or other future propulsion breakthroughs. It is environment friendly and it can negotiate tighter curves and steeper grades both of which are being worked on by many countries and in the USA; there are several local and regional agencies which have fuel cell or hybrid technology as a test. When hydrogen is the fuel, the only emission is water. Moreover, it can negotiate tighter curves and steeper grades both of which are being worked on by NASA for space travel. The concept is being worked on by many countries and in the USA; there are several local and regional agencies which have fuel cell or hybrid technology as a test. When hydrogen is the fuel, the only emission is water.
environment. Planners and decision makers must be courageous and convincing as they present a clear message of the overall advantages of tunnels to the media, public, politicians, and fellow decision makers.

5.5 - Visionary Use of Underground Space

There is no limit for the vision applied to the use of the underground space. Originally, man lived in caves carved by nature and modified these natural shelters to suit changing needs. Now, thousands of years later, there are very interesting proposals for the use of underground space, especially from Japan. These include multi-modal complexes with offices, living quarters, public meeting areas, recreation, schools, etc., all connected to the rest of the city at multi-modal stations. In addition, there are abundant locations where products (such oil, gas and even wine) are stored in bulk storage. There are wine cellars created for the wine owner’s customers. In Kansas City, in the United States (figure 4), there are existing mined openings with over 450,000 square meters of space that is leased to various users for storage, office space, etc. Such major facilities require creative vision but can be planned boldly, just like any other underground project.

Usable underground space is not something just for the developed countries. As part of the work ITA is doing as an NGO with the United Nations, we have proposed that the development of earth sheltered construction and underground space be included as part of the effort to create sustainable rural communities, especially in areas with extreme climates.

Underground cellars and bars have been used for centuries to safely store food and other goods. This may be one of the best and least expensive ways to improve the quality of life in the developing countries. Underground spaces, properly designed, can be built with local labor and limited outside resources to provide good and safe environment for storage of water, food and other products and equipment. Underground and earth sheltered construction and storage has the following application to sustainability in shelter construction for rural communities around the world:

- It employs the most ubiquitous building material in the world, the earth itself. The material always local, and so is much of the labor. Add human ingenuity and stir.
- It combines the most ancient and modern technologies in an amalgam all its own.
- It can be competitively inexpensive to build and leaves behind a sustainable environment independent of support from external sources of material and energy.
- It provides safe and efficient storage of water, food, products, and equipment.

6 - Conclusions

In past years, planners did not have the luxury of the many tools and techniques that exist today. We should be very proud of our forefathers who had great vision and whose ideas were not achieved in their lifetime. Technology development was so slow from about 1850 to 1950 that their ideas did not materialize until technology made their schemes feasible.

Now, technology is keeping up with our ideas and vision which can be implemented relatively quickly. Accordingly, planners should be aggressive and bold in their plans for tunnels and underground space.

Owners and planners should use risk management principles from the very first time a tunnel solution is considered and carry out systematic risk management evaluations throughout planning, design and construction. These same principles should be used to systematically develop and implement value engineering and new opportunities, especially those thinking out of the box. This is particularly true for long tunnels that have abundant uncertainties.

It should always be remembered that tunnels are an investment, not a cost. Owners should develop ways to account for a financial credit resulting from environmental advantages especially for long transportation tunnels that accrue enormous environmental benefits to society. These environmental cost advantages
should be incorporated into cost ranges that take into account the long service life of the tunnels by making the decision on Life Cycle Cost & Benefit concepts, not initial capital cost.

The principles discussed for traditional tunnels also apply to the more noble use of underground space for living, working, and storage. Nor are they confined to application only to developed countries. ITA has recommended that the development of earth sheltered construction and underground space be included as part of the effort to create sustainable rural communities, especially in areas with extreme climates.

The tunnel and underground industry is very creative and their ability to innovate has been proven many times. Owners and planners should have faith in the tunnel and underground industry. The industry will be up to any challenge so planners can plan boldly and with Tunneller’s Vision.

Références


Sterling, Ray (2004). Personal Communication